⚠️В машинном обучении, как в любви: слишком идеальные предсказания – это подозрительно!
Когда модель слишком прилипчива к тренировочным данным, результат оказывается… ну, как в отношениях, когда всё кажется идеальным, но реальность ломает сердце.
❌Оверфиттинг (Overfitting) – модель так хорошо запомнила тренировочные данные, что на реальных данных начинает путаться. 💔 В любви: «Я выбрал идеального партнёра по профилю, а в жизни выяснилось, что его «идеальность» – всего лишь иллюзия!»
❌ Андерфиттинг (Underfitting) – модель обучена настолько поверхностно, что предсказывает мэтчи случайным образом. 💔 В любви: «Мне нравятся только люди с именем Александр, а всех остальных я даже не замечаю – бедный фильтр!»
❌Неправильный выбор фичей (Feature Selection Fail) – если модель опирается на неважные признаки, она предсказывает мэтчи хуже случайности. 💔 В любви: «Ты любишь авокадо? Значит, мы созданы друг для друга!» – а потом оказывается, что это вовсе не про важное.
🎯 На вебинаре мы разобрали, как избежать этих ошибок и создать работающую модель для speed dating, которая на самом деле помогает находить любовь! Вчера мы не просто говорили о любви – мы её предсказывали!
🔥 Спасибо всем, кто был с нами и участвовал!
💘Как же это было?
Если ты пропустил вебинар или хочешь пересмотреть запись – просто перейди по [ссылке] и получи видео 😉
⚠️В машинном обучении, как в любви: слишком идеальные предсказания – это подозрительно!
Когда модель слишком прилипчива к тренировочным данным, результат оказывается… ну, как в отношениях, когда всё кажется идеальным, но реальность ломает сердце.
❌Оверфиттинг (Overfitting) – модель так хорошо запомнила тренировочные данные, что на реальных данных начинает путаться. 💔 В любви: «Я выбрал идеального партнёра по профилю, а в жизни выяснилось, что его «идеальность» – всего лишь иллюзия!»
❌ Андерфиттинг (Underfitting) – модель обучена настолько поверхностно, что предсказывает мэтчи случайным образом. 💔 В любви: «Мне нравятся только люди с именем Александр, а всех остальных я даже не замечаю – бедный фильтр!»
❌Неправильный выбор фичей (Feature Selection Fail) – если модель опирается на неважные признаки, она предсказывает мэтчи хуже случайности. 💔 В любви: «Ты любишь авокадо? Значит, мы созданы друг для друга!» – а потом оказывается, что это вовсе не про важное.
🎯 На вебинаре мы разобрали, как избежать этих ошибок и создать работающую модель для speed dating, которая на самом деле помогает находить любовь! Вчера мы не просто говорили о любви – мы её предсказывали!
🔥 Спасибо всем, кто был с нами и участвовал!
💘Как же это было?
Если ты пропустил вебинар или хочешь пересмотреть запись – просто перейди по [ссылке] и получи видео 😉
That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.
How to Invest in Bitcoin?
Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”